FlowNet 是第一篇利用 CNN 直接做 Dense Optical Flow Estimation 的工作(End-to-end)。由于我们并没有一个真正的传感器去直接获取到光流,所以光流的数据集很少,且规模较小。KITTI 是一个常用的真实世界的数据集(自动驾驶场景),它是用激光雷达获取三维世界中的运动关系,再转换到二维图像的光流。这样操作首先会有一定的误差,其次这个数据集中给出 label 的像素也是相对比较稀疏的(大约只有 50% 的像素有 label)。FlowNet 的另外一个贡献就是提供了 Flying Chairs 这个合成数据集。